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Abstract. Flood damage assessment is usually done with damage curves only dependent on the water depth. Recent studies 

have shown that data-mining techniques applied to a multi-dimensional dataset can produce significantly better flood 

damage estimates. However, creating and applying a multi-variable flood damage model requires an extensive dataset, which 10 

is rarely available and this can limit the application of these new techniques. In this paper we enrich a dataset of residential 

building and content damages from the Meuse flood of 1993 in the Netherlands, to make it suitable for multi-variable flood 

damage assessment. Results from 2D flood simulations are used to add information on flow velocity, flood duration and the 

return period to the dataset, and cadastre data is used to add information on building characteristics. Next, several statistical 

approaches are used to create multi-variable flood damage models, including regression trees, bagging regression trees, 15 

random forest, and a Bayesian network. Validation on data points from a test set shows that the enriched dataset in 

combination with the data-mining techniques delivers a significant improvement over a simple model only based on the 

water depth.  We find that with our dataset, the trees based methods perform better than the Bayesian Network. 

1 Introduction 

Because flood risk management becomes increasingly risk-based, flood damage estimation is increasingly important in flood 20 

risk assessment. Flood risk assessment supports policy makers to decide which flood risk management measures are most 

efficient in reducing flood risks and how much investment is cost-efficient. With the European Union Floods Directive (EC, 

2007) now fully in place, national flood risk assessment are being developed with the final aim to support flood risk 

management plans. In the Netherlands, such flood damage assessment has been used to derive the optimal protection 

standard for flood protection (Kind, 2013; van der Most, 2014), using the current Dutch standard method for damage 25 

modelling (Kok et al., 2005). Also for insurance applications, more precise estimates of flood damages are required.  

Flood risk assessments require flood damage models. These models typically predict the fraction of damage based on the 

water depth, and average building repair and replacement costs for different types of buildings (Messner et al., 2007; 

Jonkman et al., 2008). When validated, such simple flood damage models often don’t perform well (e.g. Jongman et al., 

2012).  This is because water depth alone cannot explain the full complexity of the flood damaging processes and several 30 

studies have only found low correlation coefficients (typically below 0.5) between the water depth and the flood damage 

(e.g. Merz et al., 2013, Pistrika&Jonkman, 2009). Furthermore, often no local data is available on flood damage and 
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therefore a relationship between the water depth and damage either needs to be estimated or transferred from other areas 

(Wagenaar et al., 2016). This can cause errors as simple models hold many implicit assumptions that may not be valid for the 

situation the model is transferred to, for instance when the transferred function is only valid for specific flood durations. 

Transferability however could be improved, when a model describes more variations of the damaging process, and when 

more variables are included in the damage models. 5 

Current approaches suffer from two main limitations: first, they rely on limited information and usually only take into 

account water depth as a predictor, and use a deterministic relation between water depth and some fraction of average 

maximum damages; secondly, they are deterministic in nature, while it has been shown that uncertainties in this approach are 

large, but generally not quantified e.g. in the Dutch standard method (Egorova et al., 2008). Some of the multi-variable 

methods are able to provide probability distributions, rather than deterministic estimates of damages. 10 

Recently, multi-variable flood damage models have been created based on a German dataset based on telephone interviews. 

Using information from this database, Merz et al. (2013) used regression and bagging trees and Vogel et al. (2014) used 

Bayesian Networks to predict the flood damage. Spekkers et al. (2014) did something similar for pluvial floods. These multi-

variable flood damage models have been shown to perform better than simple flood damage models in terms of explained 

variability, both tested on their own dataset and on datasets from other floods (Schröter et al., 2014). Also, some multi-15 

variable approaches (Bayesian Networks, Bagging trees and Random Forests) generate probability distributions of estimated 

damages, and thus provide information on uncertainties of the estimates. Therefore, multi-variable flood damage models 

look like a promising approach to improve flood damage modelling. 

The application of multi-variable flood damage models for flood risk management studies is still difficult because of the 

large data requirements. Running a multi-variable flood damage model for a new area requires for every object several 20 

variables on the flood hazard and building characteristics that are not yet typically collected. Also creating new multi-

variable flood damage models is currently rarely done because they also require records of flood damages at building level.  

More commonly available (although still rare) are simple datasets that hold records with the flood damage that occurred for 

each building with sometimes a few other variables (such as location or water depth). Such datasets may have been created 

for compensation purposes or to build simple flood damage models but may miss most of the desired variables. An example 25 

of such a dataset is the flood damage dataset collected after the Meuse flood of 1993 in the Netherlands (WL Delft, 1994) 

that is used here, and previously described in Wind et al. (1999).  

In this paper we will explore the use of data-mining techniques to build flood damage models based on a dataset that is very 

different from the datasets used so far (fewer variables, different sources of variables and different country). Methods will be 

applied to enrich the Meuse 1993 flood damage dataset with extra flood hazard and building characteristic variables. We will 30 

answer the question of whether this enriched dataset from a different source then previous studies is suitable to build a multi-

variable flood damage model. The expectation is that the multi-variable models perform better than a model based on a 

single variable (water depth) and that even data with limited quality will improve the results.  
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2D flood simulations of the 1993 situation on the Meuse are used to enrich the dataset with additional flood characteristics. 

Cadastre data is used to enrich the Meuse dataset with extra building characteristics. Four different data-mining techniques 

are then applied to this enriched dataset: a regression tree, bagging regression trees, random forest and a Bayesian network. 

A part of the dataset will be held back and will only be used for validation. This validation is then used to determine whether 

the enriched dataset combined with data-mining techniques performs better than a traditional damage function based on the 5 

original dataset of water depths. 

 

2 Method 

2.1 Datasets 

2.1.1 Meuse 1993 damage dataset 10 

The dataset available for this research is based on the Meuse flood of 22 December 1993 in the Province of Limburg in the 

Netherlands and is described in WL Delft (1994). The flood caused a total of 254 million guilder (price level 1993) in direct 

damages, which is approximately 180 million euros today (price level 2016). The flood inundated 180 km2, which is about 

8% of the Province of Limburg.  32% of the damage pertains to residential buildings and content, for this study only the 

damage to this category is used. Other major damage categories were business (29%), government (24%) and agriculture 15 

(8%) (WL Delft, 1994). 

Damage information was collected in the context of compensation by the national government. The damage to citizen 

households was collected by an organisation called “Stichting Watersnood 1993” , the damage to companies was collected 

by another organisation called “Stichting Watersnood Bedrijven 1993”. These organisations collected the data by sending 

damage experts from insurance companies to the affected buildings, several weeks after the flood event had occurred. The 20 

building structure of a rental residential building belonged to a company. So, for rental residential buildings the damage was 

collected by a different organisation than the damage to the content for the same structure. For privately owned residential 

buildings all data was collected by the same organisation. 

Directly after the damage data was collected in 1994, the data was shared with WL Delft (now Deltares) to create a flood 

damage model. WL Delft received 5780 records for damage to residential buildings. This dataset however did not include 25 

the building structure damage to all rental houses. Estimates of building structure damages were available for some rental 

houses and the aggregate building structure damage to rental houses was available. Several manual actions were undertaken 

in 1994 to repair this dataset and produce a complete dataset of building structure and building content damage.  

The original data was not available for this study and only the final product of the WL Delft study was available. It is also 

not completely clear what manual actions happened to which records by WL Delft in 1994. The building structure damage 30 

records may therefore be of inconsistent quality. Another issue with the dataset is that for privacy reasons the exact locations 
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of the buildings were not shared with WL Delft. Only the 6 digit postal code was available for this study, which makes it 

difficult to enrich the dataset, as between 1 and 20 buildings share the same 6 digit postal codes in the dataset. 

In the original dataset the water depth (relative to the ground floor level) was estimated by the experts that surveyed the 

damage. The quality of water depth estimate is questioned by WL Delft (1994; report 9, appendix A) because it was not the 

main aim of the survey and the experts visited several weeks after the water had receded. A plot of the water depth (see Fig. 5 

1) and the damage doesn’t show an obvious relation. The correlation between the water depth and the damage is weak 

(Pearson correlation coefficient = 0.18). 

The final dataset also contains information on the number of inhabitants per building, whether the house has a basement and 

whether the house was attached to other houses. This data is however not described in any of the available reports so the 

collection methods are not known, but the recorded values are clear enough to incorporate in this study. Two more variables 10 

are also included in the WL Delft dataset and also not described in any available report. These are emergency actions and 

ownership of the house. The meaning of the values found in the dataset for these variables is however not sufficiently clear, 

and could unfortunately not be taken into account in this study. 

2.1.2 Upgraded Meuse 1993 dataset 

To improve the dataset, information is required on both the flood hazard and additional exposure variables. The results of a 15 

2D flood simulation and cadastre data were used to upgrade the dataset, in terms of hazard and exposure information, 

respectively. Because no observational data is available on flood characteristics other than the water depth, a simulation of 

the flood event was done. In the 2D flood simulation tool WAQUA (Rijkswaterstaat, 2013), a verified model of the state of 

the Meuse during the 1993 flood was available (Becker, 2012) and applied in this study to get extra variables. Using this 

model, a new simulation was run using a discharge boundary condition at Eijsden and the a water level boundary condition 20 

at Keizersveer for the period 1 November 1993 to 31 Januari 1994. This simulation was used to create a maximum water 

depth map, a flood duration map, a flood return period, and a flow velocity map at a spatial resolution varying between 10 

and 40 meter.   

The maximum water depth and flow velocity are standard outputs of WAQUA. Flood duration is however not a standard 

output and is more difficult to get from a 2D flood simulation because the drainage also needs to be included in the 25 

schematisation (Wagenaar, 2012). During the 1993 Meuse flood, most drainage occurred because of the natural slope in 

terrain and therefore the 2D flood simulation implicitly includes most of the drainage because the discretised bed level is 

included. The flood duration can then be calculated by analysing the time-varying maps of the water depth and calculating 

for every cell the time between the moment a cell is inundated and the moment the cell is dry again. However, some cells in 

the digital elevation map in WAQUA are surrounded by cells that have a higher elevation. These cells do not drain in the 2D 30 

flood simulation and are still inundated at the end of the simulation. For these cells the flood duration has been calculated 

based on the change in water depth. If the water depth in a cell stays the same in the simulation for 24 subsequent hours the 

cell is considered dry at the moment this stable water depth is first reached. 
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Simulations were also ran with the same Meuse 1993 schematisation for design discharges with 1, 10, 50, 100, 250 and 1250 

return periods. These discharges are based on HR2006 (Diermanse, 2004) and have discharges of respectively 1300, 2260, 

2869, 3109, 3431 and 4000 m
3
/s. The results of these simulations were combined to create a flood return period map for the 

Meuse 1993 situation. This map shows for each cell at what return period it first floods. Figure 2 shows that large water 

depths occurred and that most of the area floods frequently. The majority of the houses is however located in the safest areas 5 

with the lowest water depths and highest return periods. 

These maps (water depth, flow velocity, flood duration and return periods) were linked to the original damage records using 

cadastre data. The data of the cadastre has exact building locations,  postal codes, living area within the residential buildings, 

the building footprint area and the construction year. The building year was used to filter the data to find the building stock 

of 1993. Then, based on the building locations the 2D flood simulation results were linked to the cadastre data.  10 

This combination of cadastre data and 2D flood simulation data is then used to make the link with the original flood damage 

records. First per postal code a list is made of the damage records in the postal code area and ranked based on the water 

depth in the original damage records. Then another list is made of the objects per postal code according to the cadastre and 

also ranked based on the simulated water depth. The cadastre objects combined with the 2D flood simulation data is then 

linked per postal code based on the water depth rank. This results in a join between the original damage records, cadastre 15 

data and 2D flood simulation results. Table 1 gives an overview of the available records in this combined dataset. 

The method of joining cadastre objects with damage records within a postal code area based on water depth rank is error 

prone. The modelled water depth is on average 30 cm larger than then the recorded water depth. This is possibly because the 

difference in reference level of both data sources as the recorded water depth is relative to the floor level and the modelled 

water depth is relative to the digital elevation map. Not all houses have the same floor elevation and both the recorded and 20 

the modelled water depth are uncertain, because of recording and model imprecisions. It is therefore likely that some damage 

records have been linked to the wrong object. However, errors will likely be limited, because the join on postal codes is 

accurate. Object and flood variables are generally similar for buildings within the same postal code area (e.g. houses within a 

street are typically similar to each other) so these errors are expected not to significantly disturb the general trends in the 

data. The errors are therefore considered acceptable given that the purpose of the dataset is only to build a flood damage 25 

model. If significant errors are present this would result in a reduced performance of the data-mining algorithms on the test 

set. 

2.2 Data-mining algorithms 

Several data-mining (sometimes called machine learning) techniques have been applied to the enriched dataset to build 

multi-variable flood damage models. The different data-mining techniques all have different ways to generalize the training 30 

data in such a way that it can give useful predictions of the total damage, based on all independent variables (thus excluding 

total, content and structure damage). 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-7, 2017
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

These multi-variable flood damage models are be compared to a reference model to assess the value of the enriched dataset 

and to assess the value of multi-variable flood damage models in general. Table 2 provides an overview of the different data-

mining algorithms applied to the different datasets. 

2.2.1 Regression: Root function 

In order to assess the multi-variable flood damage models, a reference flood damage function was constructed. For this a 5 

root function was chosen because many damage functions in the literature have this shape. Merz et al. (2012) applied the 

same method to get a reference damage function. The root function (1) is fitted to the dataset in such a way that the 

coefficients c1 and c2 are optimised to get the smallest possible error based on the total damage (td) and water depth (df) data. 

The optimisation of the coefficients is done with the Python package SciPy. 

         √                                                                                                                               

2.2.2 Regression tree learning 10 

Decision trees are a way to represent complex relationships between data and classes in a tree structure. A decision tree can 

be seen as a series of binary questions (nodes) leading to an answer in the form of a class (leaf). A question can be related to 

any variable at any value (e.g. is the water depth smaller than 0.5m).   

A regression tree is similar to decision trees but instead of classes it results in real numbers. In theory, regression trees can be 

very large and have a separate leaf for each unique value in the dataset. However, more common is to combine several 15 

similar unique values inside the same leaf and represent it with a summary statistic number (mean). In such a case the 

regression tree is an approximation of the relationship. 

Regression tree learning algorithms can create optimal regression trees based on a dataset. In this paper the dataset consists 

of 4398 flood damage records (incomplete records are discarded) with for each damage record 11 variables (see table 1). The 

regression tree algorithm aims to split the dataset into subsets in such a way that the mean squared error (MSE) of the 20 

predicted total damage for all observations reduces maximally compared to the observed data. It does this by calculating the 

MSE error reduction for all candidate splitting variables according to their value and then picking the combination that 

maximises the mean square error (MSE) reduction (  ) as shown in (2). The regression tree is grown by repeating this 

process at each node of the tree. This has been done with the Scikit learn library in Python (Pedregosa et al. 2011). 

    
 

 
(∑     ̅   ∑      ̅  

  ∑      ̅  
 )                                                                                                               

Where    is the Reduction in MSE error of total damage for a particular split variable and value,   is the total number of 25 

observations in the node,    is the vector of observed target values in the node and  ̅ is the mean of the target values in the 

node.      and     are vectors with the observed target values of the left and right group after the split and  ̅ and  ̅  are the 

mean observed target value for the left and the right group. 
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A regression tree algorithm keeps splitting the dataset into new branches until no more reductions in the MSE can be made. 

This can result in overfitting, which results in very large trees with only one data point per leaf. These very large trees are 

not a realistic representation of reality, and they typically perform badly when they have to predict the damage for a new data 

point that wasn’t used for building the tree. There are several methods to prevent overfitting. The simplest methods require a 

minimum number of data points in a leaf or set a maximum number of nodes that the tree is allowed to contain. The 5 

disadvantage of these methods is that they sometimes don’t build out a branch within the tree which at first doesn’t look 

promising but which can make valuable homogeneity improvements deeper in the tree. A method called pruning is a more 

sophisticated method, in which the entire tree is first build with a subset of the data points, and then cut back based on its 

performance on data points that were not used for building the tree. This method was investigated in this research. This was 

done using the Matlab Statistical Toolbox (Matlab website), based on the work by Breiman et al. (1984), because the Python 10 

libraries do not support pruning. The performance of the pruning algorithm on this dataset was similar to a regression tree 

built with a combination of a minimum data point requirement per leaf and a maximum number of leaves. Therefore, the rest 

of the study was performed without pruning in the Scikit learn library in Python (Pedregosa et al.2011). Accordingly, the 

results shown do not include pruning. 

2.2.3 Bagging regression trees 15 

Another method to avoid overfitting and generally improve the accuracy of decision/regression trees is bootstrap 

aggregating, also called bagging.  The idea behind the method is to resample the dataset multiple times and to build a new 

regression tree for each resampled dataset. This results in an ensemble of regression trees. The resulting flood damage is then 

the average of the ensemble of regression trees. Resampling is done by building several datasets by randomly picking 

records from the original dataset (each record is allowed to be used multiple times in the same dataset). Every resampled 20 

dataset therefore randomly leaves out a fraction of the observations and puts more weight on other observations because they 

are picked multiple times. Bagging regression trees also lead to probabilistic outcomes because the ensemble of trees can be 

seen as a probability distribution of the outcome. 

2.2.4 Random Forest 

A random forest is a more advanced variation of bagging regression trees. Apart from building multiple trees with resampled 25 

datasets it also randomly excludes a subset of variables at each decision split. This will result in an ensemble of regression 

trees each based on a different set of damage records and each leaving out a different number of variables at each decision 

split. For this paper the default settings of Scikit learn are applied, in our case this means 8 variables are left out at each 

decision split. 
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2.2.4 Bayesian Network 

A Bayesian Network is a type of Probabilistic Graphical Model that represents a set of random variables and their 

conditional dependencies in a directed acyclic graph (DAG) structure. Each variable in the network may be observed or 

represented as a prior probability distribution and dependencies between variables are represented with edges representing 

joint probability distributions. The edges in a Bayesian Network are directed which means there is a direction in which the 5 

influence of one variable flows to the other. From this network, inference can be done in order to use knowledge of one 

variable to make predictions about other variables.  

Bayesian Networks and Probabilistic Graphical Models in general are used in many different fields, such as bioinformatics, 

image processing, speech recognition and decision support systems.  Recently, they have also been applied to flood damage 

modelling (Vogel et al., 2014; Schröter et al. 2014; Van Verseveld, 2014). Schröter et al. (2014) found that their 10 

performance is often better than that of the different types of tree methods. Furthermore, a Bayesian Network can give its 

result as a probability distribution and does not require information about each variable in order make predictions. If fewer 

variables are available, the Bayesian Network handles this by adjusting the probability distribution of the outcome. This 

makes it ideal for transfer of models to other locations where less data is available than for the location where the model was 

originally based on. Furthermore, it returns (for each object) probability distributions rather than deterministic values, which 15 

is valuable for assessing uncertainties within the damage model estimates.  

A Bayesian Network can be discrete, continuous or a combination. In this paper fully discrete Bayesian Networks are used, 

in which all variables are discretized into bins. Given a network the probability of particular set of discrete variable values 

can be calculated with the following formula: 

           ∏    |            

 

   

                                                                                                                                                      

Where    are the variables and             is the set of variables directed to   . The probability of a single variable value 20 

can be obtained by taking the sum of all the probabilities that contain the variable value of interest. The conditional 

probabilities are stored in conditional probability tables (CPTs). These tables show, for each combination of parent variable 

values, the probability of each possible output value. 

A data-driven Bayesian Network can derive all its CPTs from the data and even derive its graph structure from the data. For 

this paper, two Bayesian Networks were made: A data-driven Bayesian Network with both the graph structure and the CPTs 25 

derived from the dataset and an expert network where the graph structure was estimated in an expert session but the CPTs 

were derived from the dataset. All calculations were done with a Python library called libpgm developed at CyberPoint Labs 

in 2012 by Charles Cabot (http://pythonhosted.org/libpgm). This library follows the methodology described in Koller and 

Friedman (2009). 

The CPTs are learned with maximum likelihood estimation. This method estimates the (joint) probability distributions based 30 

on the number of observations.  The discretisation assumptions have an impact on the maximum likelihood estimation. If the 
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variables are discretised into a large number of bins more possible combinations of states are possible. These combinations 

of states grow exponentially with the number of bins of the parent variables. A too fine discretisation therefore quickly leads 

to more possible states than available data points. This results in a poor performance of the maximum likelihood estimation. 

Koller and Friedman (2009) call this one of the key limiting factors in learning Bayesian Networks from data. A too coarse 

discretisation on the other hand is also not desirable because it limits the precision of the Bayesian Network. For this study a 5 

balance was found by trying several discretisation resolutions in order to gain the best results.  

Discretisation was done by splitting the data into bins with an equal number of data points in each bin. This works better 

than making equal sized bins because of the large extremes in especially the damage data. Equal sized bins would either 

increase the number of bins, which is detrimental to the maximum likelihood estimation (having bins that contain no 

observations), or the bins would be so large that a majority of the data points would end up in the same bin, which would 10 

limit the Bayesian Network performance. The result of using an equal number of data points is that most bins are fairly equal 

in size with only the highest bin being much larger. The number of bins per variable was chosen based on the performance of 

a test set. This was done manually by varying the discretisation of the most important variables until the smallest error was 

found. For the Bayesian Network with the data-driven structure the number of bins chosen was slightly larger, because the 

network is less complex than the expert network. 15 

The performance of the Bayesian Network on the testing data can be sensitive for discretisation. There are two possible 

alternatives for the discretisation method applied in this paper: An optimisation algorithm could be applied to determine the 

optimal discretisation, or a continuous Bayesian Network could be used (Friedman and Goldszmidt, 1996). Apart from 

solving the discretization problem the advantage of a continuous Bayesian Network is that it would probably perform better 

in predicting extreme values but a disadvantage is that the Bayesian Network is restricted to specific families of parametric 20 

probability distributions (Friedman and Goldszmidt, 1996). An optimization algorithm for the discretization can minimize 

the error produced by the discretizing but does not solve the fundamental problem of having too few data points. 

The data-driven structure is also learned with the libpgm Python library. This library is using a constrained-based approach 

for structure learning, as is described in Koller and Friedman (2009). In a constrained based approach the structure is learned 

by calculating dependencies and conditional dependencies among the variables. When two variables are dependent 25 

regardless of what they are conditioned by, an edge (connection) is formed. The algorithm follows this procedure to create 

the entire network. The result is shown in figure 4 (left). 

As an alternative to the data-driven structure a structure was also made in an expert meeting involving the following Deltares 

flood damage/Bayesian Network experts: Karin de Bruijn, Marcel van der Doef, Kathryn Roscoe, Laurens Bouwer and 

Dennis Wagenaar. In the expert meeting the network was constructed based on a combination of expert judgement/logic and 30 

with the knowledge of figure 3 in this paper. The experts focused mainly on edges that they thought are relevant for 

estimating the flood damage. The result is shown in Figure 4(right).  

The total damage is the sum of the structure damage and the content damage. Therefore in the expert network it has been 

decided not to use the total damage variable. Instead the total damage is calculated as the sum of the expected value of the 
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structure and the content damage. In the data-driven network the structure damage was not included by the algorithm. 

Therefore, the total damage variable itself is used for the data-driven network. 

3 Results 

3.1 Model comparison 

The different models are tested on a test set that was not used for training the models. Two indicators are used to rate the 5 

performance of the models: Root Mean Square Error (RMSE) and the Pearson correlation coefficient. The RMSE is the 

average absolute error divided by the average damage, so a smaller RMSE is a better model. The Pearson correlation 

coefficient is a measure of the linear dependence between two variables. This measure is used to compare the predicted 

damages with the actual damages in the test set. A Pearson correlation of one means a perfect correlation, zero means no 

correlation and minus one a perfect inverse correlation. Table 3 shows the results for the different models. 10 

Table 3 shows that given that the models can use all data, random forest and bagging regression trees perform equally well. 

Bagging regression trees and Random Forest do perform significantly better than normal regression trees, as was also noted 

by Merz et al. (2013) for flood damages in Germany. Random Forest and Bagging regression trees also outperform the 

Bayesian Networks. The normal regression trees also works better than the Bayesian Networks. This contradicts earlier 

findings by Schröter et al. (2014), who found that in most cases (with different better training data) that Bayesian Networks 15 

outperformed the regression trees. 

Many explanations are possible for the relatively poor performance of the Bayesian Networks.  The discretization of the data 

is a possible problem. Some trends could be too subtle to be captured by the rough discretization, but not enough data points 

are available for a more precise discretization.  Perhaps there still is some space for improving the discretization, for example 

by applying an optimization algorithm to pick bin definitions in such a way that the available information is applied 20 

optimally (Vogel et al. 2012 applied such an algorithm).  Another possible reason is that Bayesian Networks might be more 

sensitive to low quality data in combination with a small dataset. Some of the CPTs applied in the Bayesian Networks here 

are large and conditional probabilities are based on a relatively small number of observations. Some wrong observations may 

then have a relatively large impact on the damage prediction.  

In the data-driven network the variable of interest (total damage) in our test is only influenced by the water depth. This is 25 

because the water depth relative to the ground floor is known while the content damage is not known, so the known water 

depth blocks all the influence of other variables and the unknown content damage has no influence because it is unknown (it 

is a target variable). The data-driven Bayesian Network is therefore in our test in practice only dependent on the water depth. 

So the structure learning decides to ignore the other variables when the water depth relative to the ground floor is available. 

This is probably because the data-driven structure algorithms finds all variables equally important and therefore draws only 30 

the most important edges (connections) regarding the total damage. Other methods (e.g. as described by Riggelsen, 2008) for 

structure learning might be able to give better results. 
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3.2 Benefits of more data 

The models were trained with different numbers of variables to see whether the additional data is valuable. As expected, the 

best performing model with a high number of variables always performs significantly better than the best performing model 

with fewer variables. More data therefore seems to add potential value to the damage prediction despite the possible quality 5 

issues in the additional data. 

The relatively good performance of regression trees compared to the fitted root function based on only the water depth is 

striking. A likely explanation for that is shown in the relation of water depth to the average damage in Figure 5. It seems that 

a damage function based on only the water depth should be downward sloping after 90cm, a root function therefore has the 

wrong shape. The shape that is suggested by Figure 5 would make physically no sense, if there are no other variables related 10 

to both the water depth and the damage that explain this downward sloping. However, in this case the return period might 

play such a role as it is negatively correlated with the water depth. Areas with large water depth are more frequently 

experiencing floods. Areas that experience floods more often are possibly better prepared and experience therefore possibly 

less damage.   

Any data-driven flood damage model only based on water depth that learns that at greater water depths the damage is smaller 15 

than at lower water depths is not having a sufficiently good generalization about the relationship between water depth and 

flood damage. In a way the regression tree in this case is therefore overfitting on this specific flood event. This does not 

show up in the test set because the test set was based on the same event. Therefore, when the aim is to make a generally 

applicable flood damage model, a data-driven flood damage model should be tested on flood events that are not included in 

the training data (such as was done in Schröter et al., 2014). Overfitting on a flood event also shows the importance of using 20 

multiple variables in a model, because it shows that floods are different from each other in more ways than just the water 

depth. In this case using more variables could help produce a model that can explain the reduction in damage for higher 

water depths. However, for such a model to be generally applicable the training data for the model would need sufficient 

variety to be able to model the entire spectrum of possible events.  

4 Conclusion and discussion 25 

Additional data improves flood damage modelling relative to a test set, even if this data comes from a collection of different 

sources and is of limited quality (error prone). The data-mining algorithm is also important. Given the same data there are 

large differences between the algorithms. Random Forests and bagging regression trees perform significantly better than 

normal regression trees and the Bayesian Networks perform poorly compared to any of the tree based methods. 

Our current approach doesn’t show that the additional variables are beneficial for the Bayesian Networks. However, because 30 

the tree methods can benefit from the additional data it is likely that in some cases Bayesian Networks could also. The poor 
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performance of the Bayesian Networks contradicts earlier studies (Schröter et al., 2014) and could be due to the 

discretization method or problems with data quantity or quality.  

This paper trained flood damage models on just a single flood event. Ideally training data should consist of multiple events 

so that the spectrum of possible damages which the model is trained upon is larger. Especially for the transfer to other areas 

this would be important. 5 

The test set that was applied in this paper for the validation of the model, was randomly selected from the data and 

consistently applied among all models. The indicators for model performance would have been more accurate if cross-

validation was used instead of a single test set. Expectations are that this would cause minor shifts in results but that it would 

not influence the conclusions of this paper. 

This paper did not address another benefit of Bayesian Networks, Random Forest and Bagging trees, which is the 10 

incorporation of uncertainty. Bayesian Networks do this explicitly in the method and for Bagging Trees or Random Forest 

each tree can be seen as a possible damage estimate and together the trees represent a probability distribution.   

The methods applied in this manuscript provide an uncertainty estimate for a single object. For policy decision making it is 

often useful to aggregate these uncertainty estimates to a total uncertainty for the entire flood event. This can be done with 

the assumption that all objects are perfectly correlated to each other (one tree will apply to the entire event but what tree is 15 

uncertain), or with the assumption that all objects are independent of each other (each object will have a different tree but 

what tree is uncertain). Both assumptions are however not completely correct (Wagenaar et al., 2016). The Bayesian 

Network framework might offer a middle way to model this correctly. If each object has a copy of the original Bayesian 

Network, and these Bayesian Networks are linked together based on the location of the objects, it can be explicitly taken into 

account that nearby objects are more likely to have similar damages. This could be an argument to prefer Bayesian Networks 20 

over tree based methods.  

Bayesian Networks do have more potential advantages that were not yet used in this study. They are flexible and expert 

knowledge can be added to the conditional probability tables or the network. Furthermore, Bayesian Networks are designed 

to have more than one unknown variable and deal with them correctly by increasing the uncertainty. This is an advantage 

when transferring models to other areas where less data is available. Tree methods also provide options to deal with missing 25 

values (Kreibich et al., 2016).    

Data-mining and multi-variable statistical techniques can help to create and improve flood damage models and have many 

theoretical advantages over deterministic damage functions based only on the water depth. The application of these 

techniques however remains difficult in practice, because of the limited number of data points, as well as acquisition of that 

data. In this paper we utilized different data sources compared to previous studies to acquire this data and showed that also 30 

on this dataset the methods are beneficial, especially the tree based methods. One possible way forward is to merge available 

datasets from different events or countries, and use expert knowledge in order to make a more generally applicable model 

which also works in circumstances outside areas for which flood damage data is available. 
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Table 1: Description of the variables in the flood damage dataset for the Meuse flood of 1993. 

 Variable Unit Source Pearson 

correlation 

on damage 

td Total damage Guilder (1993 value) Original dataset
a
 1 

sd Structure damage Guilder (1993 value) Original dataset
a
 0.85 

cd Content damage Guilder (1993 value) Original dataset
a
 0.83 

df Water depth relative to 

floor 

m Original dataset
a
 0.18 

dg Water depth relative to 

DEM 

m Flood 

simulation
b
 

0.18 

bs Basement 1=Yes, 2=No Original dataset
a
 -0.04 

dh Detached house 1=Yes, 2=No Original dataset
a
 0.08 

hs Household size Number Original dataset
a
 0.17 

fv Flow velocity  m s
-1

 Flood 

simulation
b
 

0.04 

fd Flood duration h Flood 

simulation
b
 

0.05 

rp Return period year  Flood 

simulation
b
 

-0.09 

ba Building age year Cadastre
c 

0.01 

la Floor area for living m
2
 Cadastre

c
 0.04 

fa Footprint area building m
2
 Cadastre

c
 -0.02 

a
 WL Delft, 1994 

b 
2D flood simulation data using WAQUA 

c 
Basisregistraties Adressen en Gebouwen (BAG), version 2011 (Kadaster website).  
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Table 2: Overview of the applied data mining algorithm. 

Data-mining algorithm Applied on:  

Water 

depth 

Original 

variables a 

All 

variables 

Purpose 

Regression: Root function  x   Reference, representing traditional 

method. 

Regression tree x x x Comparison of the methods and to 

see whether adding extra variables 

results in better predictions. 

 

 

 

Bagging regression trees x x x 

Random Forest x x x 

Data-driven Bayesian 

Network 

x x x 

Expert Bayesian Network x x x 

a
 Only data recorded directly after the flood (the variables of WL Delft, 1994) 
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Table 3: Results of different models for two indicators: RMSE and correlation coefficient 

Calculation RMSE Correlation 

coefficient 

Root function 0.612 0.152 

Regression tree  0.561 0.313 

Bagging regression tree 0.504 0.388 

Random forest 0.508 0.394 

Data-driven Bayesian Network 0.629 0.208 

Expert Bayesian Network 0.607 0.206 
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Table 4: The best performing model with different number of variables for two indicators RMSE and the correlation coefficient. 

Variables Method RMSE Correlation 

coefficient 

Only water depth Regression tree 0.564 0.306 

Only original variables (waterdepth, 

household size, detached house, 

basement) 

Bagging trees 0.551 0.345 

All variables Random Forest 0.508 0.394 
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Figure 1: The water depth and the damage in the original dataset. 
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Figure 2: Maps of the affected objects and the simulated water depth (similar maps were made for return period, flow velocity and 

flood duration). 
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  td sd cd df hs bs dh fa ba dg la fv fd rp 

 
 

td                             

sd                             

cd                             

df                             

hs                             

bs                             

dh                             

fa                             

ba                             

dg                             

la                             

fv                             

fd                             

rp                             
Figure 3: Correlation coefficients between the different predictors. See Table 1 for a description of the abbreviations). 
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Figure 4: Right the Bayesian Network constructed by experts, left the Bayesian Network learned from the data (see Table 1 for the 

definitions of the abbreviations). Note that not all variables have to be used for the networks.  
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Figure 5: Average damage during the Meuse flood of 1993 per water depth class. 
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